Typical Install Instructions

Read & understand all steps of these instructions before beginning this installation.

Kit is for off-road use, not for use on the highways, or in California.

WEBER Conversion Kit, K297 by REDLINE

VW T-2 & T-4, up to 1800cc (1.8 ltr) 32 / 36 DFEV Weber Carburetor

These instructions are intended as a general guide for installation.

Certain steps may vary slightly for different vehicles.

Jetting Specifications

Jetting specifications of carburetors supplied in kits may vary slightly, but will always be correct for the intended application.

Tools Needed

Combination, box or open-end wrenches (metric) Socket set with 12mm socket Screwdrivers (regular and Phillips) Pliers Gasket Scraper, Knife Wiping rags, Cleaning solvent Gasket sealer Wire cutters

Parts Supplied with Installation Kit

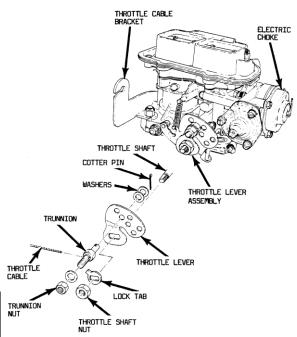
- 1 Weber 32/36 DFEV
- 1 Intake manifold & end rails
- 1 Linkage and levers Hardware Kit
- 1 Air Filter

INSTRUCTION / JETTING NOTES:

The following "<u>instructions</u>" are based on a vehicle and engine in a "relatively" stock condition. If you have modified your vehicle and/or engine, some of the following steps may not apply to your application. The jetting in this conversion kit will accommodate stock engines up-to 1800cc. Using modified dual port cylinder heads, larger engines 1800cc and up, mild grind camshafts, open exhaust systems, altitude or climate **will** require a jetting change. Use the **REDLINE** jet kit #701-DFV4A if rejetting your Weber Carburetor is necessary.

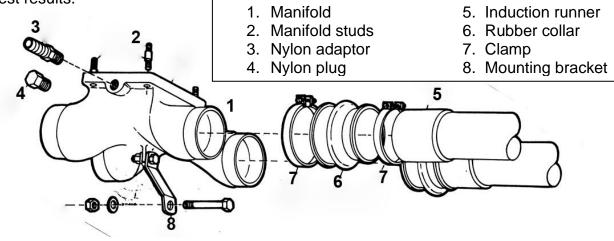
RECOMMENDED ADDITIONAL PARTS: (specifically fuel injection conversions)

1. New H.D. fuel filter #99901.525 and a lower pressure new fuel pump # 99009.131. Many late model fuel injected vehicles use a high-pressure fuel delivery system. The WEBER carburetor only requires 3 lbs Maximum. For aggressive driving or off road use, REDLINE recommends the float height of 18mm from the gasket to top of plastic float, DO NOT depress the ball and spring in the needle valve, then, set the float drop to 2mm "needle" travel. Use a fuel pressure regulator #31800.063, adjusted to 2 lbs. for more stable fuel and float control.


INSTRUCTIONS K 297

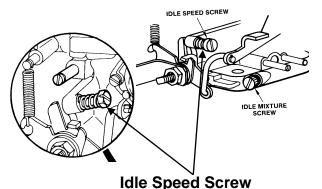
- 1. First, disconnect the battery. Remove the distributor, making sure to mark its position for correct replacement. Do not turn the engine over while the distributor is removed from the engine.
- 2. Remove the stock air filter assembly, carburetor, throttle linkage, manifolds & balance manifolds.
- 3. If the car was fuel injected, install a new carburetor fuel pump #99009.131 and fuel pressure regulator 31800.063. The Weber carburetor needs 3 P.S.I maximum.
- 4. Take the new manifold and screw the four 8mm studs into it making sure the stud's bottom out. If the car being worked on has power brakes, screw the nylon adapter (aimed toward the front on the vehicle) into the manifold. If there are no power brakes use the nylon plug to block off this hole. (see diagram)
- 5. Attach the mounting bracket to the manifold as shown in the diagram. Loosely attach the manifold to the engine so some adjustments can be made.
- 6. Thoroughly clean off the runners seating area on the cylinder heads. Place the rubber collars and their clamps on the new induction runners, sliding them back onto the runners to allow the rubber connectors to slide onto the box after being bolted in place.
- 7. Install the induction runners using the gaskets supplied with the kit. The torque for the bolts are 14 ft/lbs. Once the runners are bolted and torqued in place, the rubber collars can be slid over the manifold outlets and clamed into place.
- 8. The manifold mounting bracket can be tightened to the engine casing.
- 9. The new Weber carburetor and base gasket can be bolted to the manifold. The throttle linkage should face the drivers (left) side of the car. Connect the new fuel hose to the outer inlet on the carburetor.

Install the new REDLINE lever on the carburetor. **CAUTION: Do not over tighten throttle shaft nut.** Proper tightness can be achieved by installing nut just slightly more than finger-tight (finger tight then one more flat of the nut) and bend lock tab.


INSTRUCTIONS K 297

- 10. On some models it may be necessary to drill another hole for the throttle cable to pass through the engine sheet metal about 4" to the right of the existing hole. This is to allow the cable to meet up correctly with the carburetor linkage. Attach the throttle cable to linkage (swivel pin) with the hardware provided in the kit. **NOTE:** Connect the built-in electric choke to the lead from the old Solex electric choke, or, injected cars use a 16 gauge wire to a "keyed/switched" 12 volt source. Do not use the positive side of the coil as a source of power for the choke.
- 11. Reconnect the fuel lines and vacuum lines. Replace the distributor and reconnect the battery. If a centrifugal advance distributor is being used, block off the ported vacuum source below the choke and above the mixture screw on the carburetor.
- 12. Lightly lubricate all moving parts on the linkage and carburetor. Check for full throttle operation by pushing the accelerator foot pedal inside the vehicle. Make sure all linkage operates smooth and free not to be stuck at a full throttle position. Be sure the return spring is operable and cannot bind or vibrate loose. Install the new air filter by removing the studs from the top of the carburetor and using the 6mm bolts provided with the air filter.
- 13. Before starting up the engine, check that all parts have been correctly installed and tightened down.

14. The engine can now be started; check for fuel leaks. It is very probable that some carburetor adjustments and timing adjustments will need to be made. Please follow our tuning instructions for best results.


WEBER 32/36 DGAV, DGEV GENERAL TUNING GUIDELINES LOW SPEED CIRCUIT TUNING

America's premier distributor of Genuine WEBER Carburetors for over 30 years

Base line Settings

Speed Screw – 1 1/2 turns in Max.

Mixture Screw – 11/4 to 1 3/4 turns

Final Settings:
Idle Speed Screw _____
Idle Mixture Screw ____

It is important to verify all linkage and levers are installed without binding and the linkage opens to full throttle and closes to the Idle Speed Screw. The number one and two reasons for tuning errors are improper linkage installations and over tightened linkage nut, causing a binding in the linkage assembly.

- * All settings are done with engine warmed up so that the choke is fully opened and disengaged.
- 1. Back out the Idle Speed Screw until it does not touch the throttle lever. Cycle or Snap the linkage again to be sure that the linkage and lever comes to complete close. (Checking for linkage bind) Turn in the idle speed screw until it contacts the throttle lever, then continue to turn the idle speed screw in 11/2-turn maximum.
- Set the Idle Mixture Screw by turning it in until it lightly seats. Then back out the mixture screw
 full turns out. DO NOT FORCE THE MIXTURE SCREW, AS THIS WILL CAUSE DAMAGE
 TO THE SCREW AND IT'S SEAT IN THE BODY OF CARBURETOR.
- 3. * With the engine at operating temperature, choke fully open and engine running, turn in the mixture screw until the engine starts to run worse, then back out the screw (recommend ¼ turn at a time) until the engine picks up speed and/or begins to smooth out. Back out 1/4 turn more, or until the screw does nothing or runs worse then turn back to the point where it ran its best. We are looking for the Lean Best Idle or the "sweet spot".
- 4. Recheck timing and vacuum hook ups. Then, recheck mixture screws to lean best idle again. If all is still the sweet, best and smoothest idle then confirm and note the final settings.
- 5. If the mixture screw is out more than 2 turns, then the Idle jet is too lean (too small). If the mixture screw is out 1 1/4 of a turns or less, then the Idle jet is too rich (too large).

These assumptions are based on the fact that the Idle Speed Screw is not more than 11/2 turns in. If the Idle Speed Screw has to be opened more than 1 1/2 turns then this is also an indication of a lean condition usually requiring jet change. "At times" it may appear to be showing signs of richness or flooding this could also be the fuel level is too high in the float bowl. Set the plastic float 18mm from gasket surface to the tip of the plastic float. Do not depress the ball & spring in the needle valve. Then, set the float drop to mm of "needle" travel. Check the fuel pressure, MAX. 3PSI. USE a REDLINE pressure regulator #31800.063!

Progression Hole's Throttle Plate Adjustment Diagram

SPECIAL NOTE:

The following describes the importance of having the Throttle Plate(s) below the fuel enrichening progression holes that are drilled in the throat of the carburetor.

Progressive Carburetors: 32/36, DFAV, DFEV etc.

Shown in Figure "A", the idle speed screw isn't turned in more than 1 ½ turns. The throttle plate (F) is below the enrichening progression holes (2), the carburetor would be at "curb" idle. NOTE:

Also, there would be zero vacuum at the distributor "ported" vacuum source! 🗲

Shown in Figure "B", the idle speed screw IS more than 1 ½ turns in. The throttle plate IS exposing the enrichening progression holes. Also, you would have vacuum at the distributor "ported" vacuum source. The extra fuel at curb idle, from the exposed enrichening holes, is 95% of the tuning problems we experience. The Idle Speed Screw CAN NOT be turned in more than 1 ½ turns MAXIMUM, or, you will experience a rich idle condition, a stumble of idle and at around 1800 RPM.

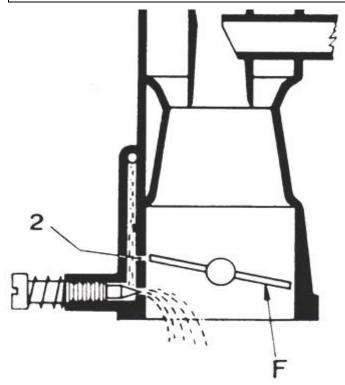


Figure A **Correct** Throttle Position

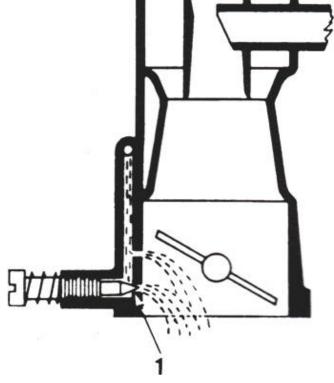


Figure B Enrichening Holes Exposed

Trouble shooting guide

This guide in intended for diagnostic purpose only. Specific procedures and adjustments should be obtained from factory service manuals or the carburetor specification sheet.

Every **REDLINE** Conversion kit is thoroughly tested at the factory and meets high quality and performance standards.

Since other engine components problems affect the performance of the carburetor it is strongly recommended to perform the general engine checks of this guide BEFORE making any carburetor adjustments.

GENERAL ENGINE CHECKS

IGNITION SYSTEM

- 1. Cracked, broken wires
- 2. Incorrect ignition wire location (firing order)
- 3. Timing improperly adjusted
- 4. Distributor cap cracked, arcing
- 5. Low coil output
- 6. Corroded plug terminals
- 7. Incorrect vacuum advance hose connection
- 8. Points corroded, wrong gap
- 9. Incorrect spark gap

EMISSION SYSTEM

- 1. Cracked, loose vacuum hoses
- 2. Improper vacuum hose connections
- 3. Faulty EGR valve operation
- 4. Air pump diverter valve anti-backfire valve faulty
- 5. Faulty PCV valve operation
- 6. Dirty breather filters (Charcoal canister, Valve cover breather, PCV filter inside air filter assembly)
- 7. Faulty feedback system operation
- 8. Vacuum delay valves (switches) faulty

FUEL SUPPLY SYSTEM

- 1. Dirty fuel filter
- 2. Incorrect fuel pump pressure (1.5 3.5)
- 3. Restricted, kinked fuel lines
- 4. Fuel lines in contact with hot surface
- Contaminated fuel

SPARK PLUG ANALYSIS

Normal spark plug condition is a sandy brown deposit on the insulator surface with no signs of electrode damage. The following conditions will help you analyze your plugs condition.

OIL DEPOSITES - WET FOULING

- 1. Worn piston rings, bearings, seals
- 2. Excessive cylinder wear
- 3. Leaking- damaged head gasket

BLACK CARBON BUILD-UP, DRY FOULING

- 1. Fuel mixture to rich
- 2. Dirty air filter
- 3. Engine over heating
- 4. Defective ignition wires
- 5. Sticking valves, worn seals
- 6. High carburetor float level
- 7. Damaged, sticking needle and seat assembly
- 8. Incorrect fuel pump pressure (1.5 3.5)
- 9. Spark plug heat range to cold

BLISTERED, BURNED ELECTRODES

- 1. Spark plug range to hot
- 2. Timing improperly adjusted
- 3. Engine overheating
- 4. Incorrect spark plug gap
- 5. Burned engine valves
- 6. Wrong type of fuel

INSULATORS CHIPED

- 1. Incorrect spark plug gap
- 2. Improper spark plug installation
- 3. Severe detonation

PLUG GAP BRIDGED

- 1. Lead deposits fused to electrode
- 2. Engine overheating
- 3. Spark plug heat range to hot

GASOLINE FOULING

- 1. Distributor cap cracked, arcing
- 2. Loose, broken ignition wires
- 3. Low coil output