Typical Install Instructions

Read & understand all steps of these instructions before beginning this installation.

Kit is for off-road use, not for use on the highways, or in California.

WEBER Conversion Kit, K410 by REDLINE

VW T-1, up to 1835cc 32 / 36 DFEV Weber Carburetor

These instructions are intended as a general guide for installation.

Certain steps may vary slightly for different vehicles.

Jetting Specifications

Jetting specifications of carburetors supplied in kits may vary slightly, but will always be correct for the intended application.

Tools Needed

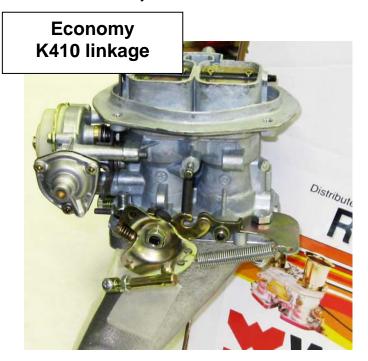
Combination, box or open-end wrenches (metric)
Socket set with 12mm socket
Screwdrivers (regular and Phillips)
Pliers
Gasket Scraper, Knife
Wiping rags, Cleaning solvent
Gasket sealer
Wire cutters

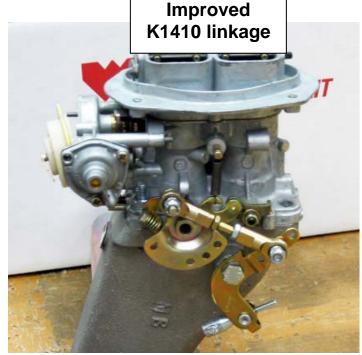
Parts Supplied with Installation Kit

- 1 Weber 32/36 DFEV
- 1 Limited Heat Intake manifold
- 1 Throttle Linkage and levers Hardware Kit
- 1 Air Filter

INSTRUCTION / JETTING NOTES:

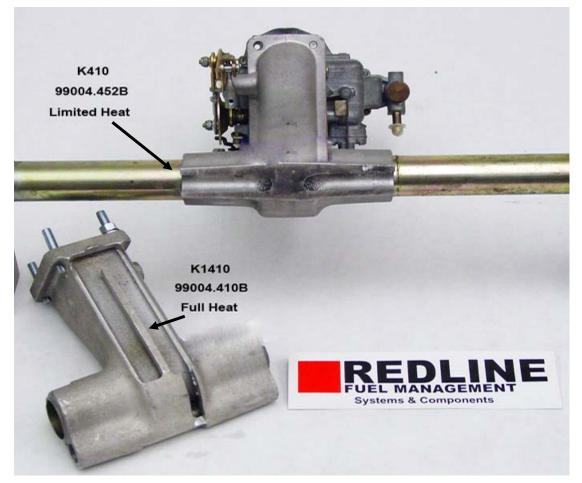
The following "<u>instructions</u>" are based on a vehicle and engine in a "relatively" stock condition. If you have modified your vehicle and/or engine, some of the following steps may not apply to your application. The jetting in this conversion kit will accommodate stock engines up-to 1800cc. Using modified dual port cylinder heads, mild grind camshafts and open exhaust systems may (will) require a jetting change. Use the **REDLINE** jet kit #701-DFV4A if re-jetting your Weber Carburetor is necessary.


RECOMMENDED ADDITIONAL PARTS: (specifically fuel injection conversions)


- 1. New H.D. fuel filter #99901.525 and a lower pressure new fuel pump # 99009.131.
- 2. Many late model fuel injected vehicles use a high-pressure fuel delivery system. The WEBER carburetor only requires <u>3 lbs Maximum</u>. For aggressive driving or off road use, **REDLINE** recommends the float height of 18mm from the gasket to top of brass float, DO NOT depress the ball and spring in the needle valve, then, set the float drop to 2mm "needle" travel. Use a fuel **pressure regulator #31800.063**, adjusted to 2 lbs. for more stable fuel and float control.

INSTALLATION K 410

- 1. Remove air cleaner and if applicable, any corresponding vacuum lines. Remove stock carburetor.
- 2. Remove the stock intake manifold and end castings. This is done by removing the fan belt, loosen the generator/alternator retaining strap and slide toward fan shroud, loosen the two side screws that hold the fan shroud to the cylinder head sheet metal. Lift the fan shroud with the generator/alternator still attached about 1.5" inches from the head sheet metal. Remove the two nuts that hold the #3 and #4 cylinder end casting (13mm). Remove the clamps that attach the end casting to the center section and remove the #3 and #4 end casting. Remove the bolt that secures the intake center section to the engine case. Loosen the clamps that secure the #1 and #2 end casting to the center section and remove the center section. Remove the two 13mm nuts that secure the #1 and #2 end casting and remove the casting.
- 3. Put some clean rags or paper towel far enough down the intake ports to prevent debris from entering the intake ports. If your car is in need of spark plugs, now is the time to replace them.
- 4. Install #1 and #2 intake manifold end casting and install the cast center section. (It may be necessary to trim the tubing that connects to the end casting. This tube is intentionally left too long to compensate for longer stroke engines.) Install #3 and #4 intake manifold end boot. Tighten all the connections i.e.: manifold boots, heat riser ends and the case through bolt. Refit the fan shroud back to its original position.
- 5. Install the 3 studs on the intake manifold flange (one hole is unthreaded for a through bolt). Remove the outer nut from the fuel pump and install the bracket that helps steady manifold. Replace the throttle lever on the Weber 32/36 DFEV with the lever supplied in the kit. DO NOT OVER TIGHTEN THE THROTTLE SHAFT NUT. FINGER TIGHT AND ONE TO TWO MORE FLATS ON THE NUT. Install the new Weber Carburetor to the manifold and check the choke to fan clearance. If there is not enough clearance, glue a 1 inch square piece of rubber to the shroud directly behind the choke unit.



INSTALATION K410

- 6. Install the throttle cable and check for free operation, then check for full throttle operation by pushing/depressing the accelerator pedal to the floor.
- 7. Connecting the heat tubes from the exhaust system is <u>very important</u>. This is the economy "limited heat" manifold and needs heat to keep the air and fuel some type of atomization in <u>ALL</u> driving climates. (including summer time in the hot deserts) The cut-away pictures below show the differences with the fully heated and the limited heat version of virtually the same manifold.

8. This Weber 32/36 DFEV Carburetor comes with our "baseline" factory jetting which is suitable for mostly stock engines to 1835cc. However, because of various engine conditions and over 3800ft altitude and different climates, the jetting *may* have to be changed somewhat. We recommend following the **REDLINE** tuning procedures (next page 4), or, find a friend that can follow these instructions, and can evaluate the running condition then adjust the jetting if necessary. Because of the various climate conditions the choke and fast idle *may* need a slight adjustment also.

REDLINE TUNING GUIDELINES 32/36 DFEV LOW SPEED CIRCUIT CALIBRATION

BASE LINE SETTINGS

Speed Screv	11/2 turns	in MAX

Mixture Screw 1 1/4 to 1 3/4 turns

Final Settings:

ldle	Speed Screw
ldle	Mixture Screw

It is important to verify all linkage and levers are installed without binding and the linkage opens to full throttle and closes to the Idle Speed Screw. The number one and two reasons for tuning errors are improper linkage installations and over tightened linkage nut, causing a binding in the linkage assembly.

- * All settings are done with engine warmed up so that the choke is fully opened and disengaged.
- 1. Back out the Idle Speed Screw until it does not touch the throttle lever. Cycle or Snap the linkage again to be sure that the linkage and lever comes to complete close. (Checking for linkage bind) Turn in the idle speed screw until it contacts the throttle lever, then continue to turn the idle speed screw in 1 1/2-turn MAXIMUM.
- Set the Idle Mixture Screw by turning it in until it lightly seats. Then back out the mixture screw
 full turns out. DO NOT FORCE THE MIXTURE SCREW, AS THIS WILL CAUSE DAMAGE
 TO THE SCREW AND Its SEAT IN THE BODY OF CARBURETOR.
- 3. * With the engine at operating temperature, choke fully open and engine running, turn in the mixture screw until the engine starts to run worse, then back out the screw (recommend ¼ turn at a time) until the engine picks up speed and/or begins to smooth out. Back out 1/4 turn more, or until the screw does nothing or runs worse then turn back to the point where it ran its best. We are looking for the Lean Best Idle or the "sweet spot".
- 4. Recheck timing and vacuum hook ups. Then, recheck mixture screws to lean best idle again. If all is still the sweet, best and smoothest idle then confirm and note the final settings.
- 5. If the mixture screw is out more than 2 turns, then the Idle jet is too lean (too small). If the mixture screw is out 1 1/4 of a turns or less, then the Idle jet is too rich (too large).

All of these assumptions are based on the fact that the Idle Speed Screw is not more than 11/2 turns in. (see the next page pictures) If the Idle Speed Screw has to be opened more than the 11/2 turns MAXIMUM then this is also an indication of a lean condition usually requiring jet change. "At times" it may appear to be showing signs of richness or flooding this could also be the fuel level is too high in the float bowl. Set the plastic float 18mm from gasket surface to the tip of the float not depressing the ball & spring in the needle valve. Then the float drop is set to 2mm of "needle" travel. Check the fuel pressure, MAX. 3 PSI. USE a pressure regulator #31800.063!

Progression Hole's Throttle Plate Adjustment Diagram

SPECIAL NOTE:

The following describes the importance of having the Throttle Plate(s) below the fuel enrichening progression holes that are drilled in the throat of the carburetor.

Weber Carburetor: 32 / 36 DFEV Progressive

Shown in Figure "A", the idle speed screw <u>IS NOT</u> turned in more than <u>1 ½ turns MAXIMUM</u>. The throttle plate (F) is below the enrichening progression holes (2), the carburetor would be at "curb" idle. Also, there would be zero vacuum at the distributor "ported" vacuum source.

Shown in Figure "B", the idle speed screw <u>IS</u> more than the <u>1 ½ turns in MAXIMUM</u>. The throttle plate <u>IS</u> exposing the enrichening progression holes. Also, you would have vacuum at the distributor "ported" vacuum source. The extra fuel at curb idle, from the exposed enrichening holes, is 95% of the tuning problems we experience. The Idle Speed Screw <u>CAN NOT</u> be turned in more than <u>1 ½ turns MAXIMUM</u> or, you will experience a rich idle condition, a stumble off idle, "flooded" hard starting, "dieseling" or run on.

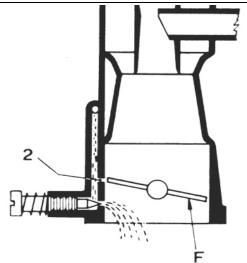


Figure A

Correct Throttle Position

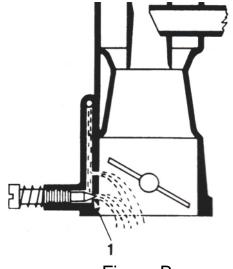


Figure B Enrichening Holes **Exposed**

We offer free **technical support service** for the first 90 days after your purchase of this conversion kit. **Provide us with the kit part number, and the production code on "our" label on the outside of the kit box.**


Additional assistance for special performance tuning AND **non-warranty service** is available <u>for a fee</u>, based on each problem resolution and the service charge will be confirmed at the time of the call, if applicable.

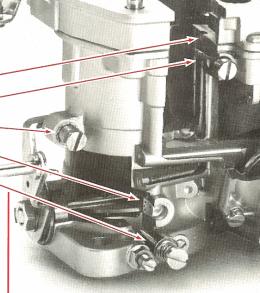
All Warranty and technical assistance is provided through the manufacture, REDLINE. **No part will be credited or exchanged through the retailer.**

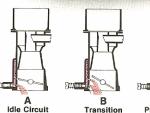
ALL technical support and warranty issues will be handled through the manufacture. REDLINE @ 1-800-733-2277 ext 7457.

LOW SPEED CIRCUIT

TECH SERIES

IDLE SPEED AIR JET
IDLE SPEED FUEL JET


IDLE SPEED ADJUSTER SCREW


TRANSITION PORTS

jet, air bleed and emulsion tube that precisely premixes fuel and air. The IDLE VOLUME SCREW actually distributes the premixed fuel/air mixture to the engine. Other carburetors rely totally on coarse threaded adjuster screws that open the butterflies to control idle speed and mixture. Only the tapered edge of the WEBER IDLE VOLUME SCREW gives your customers virnier-like management of complete mixture and engine speed.

TRANSITION: SLOTS AND BIG HOLES—GREAT PERFORMANCE DO NOT MAKE!

Instead of a slot or indiscriminately placed progression holes, WEBER chooses closely defined TRANSITION PORTS positioned in the lower part of the throttle bore to ensure smooth engine operation during throttle opening stages. Most manufacturers that mass-produce carburetors today use slots or several large holes because they can be easily cast into the carburetor. It seems they are willing to let your customers pay the price of reduced performance for their convenience. We're not. Our TRANSITION PORTS are precisely located and individually positioned in a fully machined bore. Port location is critical. The ports. must correspond to the exact position of throttle plate's beveled edge. There is ab-solutely no room for sloppy manfacturing of the WEBER carburetor. The construction process often requires extra steps-but we believe the results are incredibly important to those that demand uncompromised performance.

Priming of the

Priming of the main circuit/idle circuit cut-off

COPIES DON'T WORK AS WELL AS THE ORIGINALS!

It's been more than 70 years since WEBER developed the criteria for many of the now popular carburetor styles. In some cases with our blessing, a number of companies make their own version of the original design. Either because of mass production techniques or difference in basic philosophy—the WEBER carburetor is the clear performance choice in open racing competition and specific street applications.

Legal in California for racing vehicles which may never be used upon the highway.

WEBER Carburetors are smart. Unlike any other in the world. A WEBER can be fine tuned to perform almost any way you want. Try tuning a WEBER like other carburetors—it generally won't react the way you expect. So in order to gain the most performance, power and overall efficiency—understanding the difference is vital.

55 MPH CRUISE AT IDLE!

WEBERs are really two carburetors in one. Each independently covers their part of the operating range. Even though the first is naturally called the "IDLE CIRCUIT"—in a WEBER it is actually the LOW SPEED CIRCUIT and controls a very broad range of performance. It's also the most important difference. Other carburetors are designed to rush into the high speed circuit. WEBER thinks this approach wastes fuel and is less manageable. WEBERs are designed to efficiently operate in the LOW SPEED CIRCUIT until the engine really needs high volumes of fuel. It is this precise management of fuel and air, at critical RPMs, that promotes the exceptional throttle response and fuel economy associated with a properly tuned WEBER carburetor.

WHEN IS A MIXTURE SCREW NOT A MIXTURE SCREW?

Until they're WEBER-WISE most mechanics will swear our IDLE VOLUME ADJUSTING SCREW is the same as the familiar air bleed/mixture screw found on other types of carburetors. It's

a natural misunderstanding. They almost look the same. Our IDLE SPEED FUEL JET is also mistaken for a simple air

Idle Speed Fuel Jet

bleed. It is in fact the heart of the WEBER LOW SPEED CIRCUIT—a changeable mini

WEBERS ARE FOR WINNERS!

You can bet WEBER-WISE Champions like "Mike Gillman, Ivan Stewart and the TOYOTA RACING TEAM" understand and rely on the WEBER attention to detail and subtlety of design. WEBER...the overwhelming performance choice of winning racing teams—worldwide!

Trouble shooting guide

This guide in intended for diagnostic purpose only. Specific procedures and adjustments should be obtained from factory service manuals or the carburetor specification sheet.

Every **REDLINE** Conversion kit is thoroughly tested at the factory and meets high quality and performance standards.

Since other engine components problems affect the performance of the carburetor it is strongly recommended to perform the general engine checks of this guide BEFORE making any carburetor adjustments.

GENERAL ENGINE CHECKS

IGNITION SYSTEM

- 1. Cracked, broken wires
- 2. Incorrect ignition wire location (firing order)
- 3. Timing improperly adjusted
- 4. Distributor cap cracked, arcing
- 5. Low coil output
- 6. Corroded plug terminals
- 7. Incorrect vacuum advance hose connection
- 8. Points corroded, wrong gap
- 9. Incorrect spark gap

EMISSION SYSTEM

- 1. Cracked, loose vacuum hoses
- 2. Improper vacuum hose connections
- 3. Faulty EGR valve operation
- 4. Air pump diverter valve anti-backfire valve faulty
- 5. Faulty PCV valve operation
- 6. Dirty breather filters (Charcoal canister, Valve cover breather, PCV filter inside air filter assembly)
- 7. Faulty feedback system operation
- 8. Vacuum delay valves (switches) faulty

FUEL SUPPLY SYSTEM

- 1. Dirty fuel filter
- 2. Incorrect fuel pump pressure (1.5 3.5)
- 3. Restricted, kinked fuel lines
- 4. Fuel lines in contact with hot surface
- Contaminated fuel

SPARK PLUG ANALYSIS

Normal spark plug condition is a sandy brown deposit on the insulator surface with no signs of electrode damage. The following conditions will help you analyze your plugs condition.

OIL DEPOSITES - WET FOULING

- 1. Worn piston rings, bearings, seals
- 2. Excessive cylinder wear
- 3. Leaking- damaged head gasket

BLACK CARBON BUILD-UP, DRY FOULING

- 1. Fuel mixture to rich
- 2. Dirty air filter
- 3. Engine over heating
- 4. Defective ignition wires
- 5. Sticking valves, worn seals
- 6. High carburetor float level
- 7. Damaged, sticking needle and seat assembly
- 8. Incorrect fuel pump pressure (1.5 3.5)
- 9. Spark plug heat range to cold

BLISTERED, BURNED ELECTRODES

- 1. Spark plug range to hot
- 2. Timing improperly adjusted
- 3. Engine overheating
- 4. Incorrect spark plug gap
- 5. Burned engine valves
- 6. Wrong type of fuel

INSULATORS CHIPED

- 1. Incorrect spark plug gap
- 2. Improper spark plug installation
- 3. Severe detonation

PLUG GAP BRIDGED

- 1. Lead deposits fused to electrode
- 2. Engine overheating
- 3. Spark plug heat range to hot

GASOLINE FOULING

- 1. Distributor cap cracked, arcing
- 2. Loose, broken ignition wires
- 3. Low coil output

Carburetor troubleshooting guide

This is a guide for diagnostic purposes only

.

ENGINE WILL NOT START

Over 90% of engine failure to start conditions are ignition system related

- 1. Open circuit between starter and solenoid, or between ignition switch and solenoid
- 2. Starter motor faulty
- 3. Battery charge to low

ENGINE HARD TO START WHEN COLD STARTS & STALLS

- Incorrect choke operation (worn coil, electrical connection faulty)
- 2. Fast idle speed to low
- 3. Improper choke pull off operation
- 4. Low carburetor float level
- 5. Timing improperly adjusted
- 6. Damaged sticking needle and seat
- 7. Engine flooded

ROUGH IDLE, SURGING, MISSING, STALLING

- 1. Incorrect idle speed and idle mixture adjustment
- 2. Timing improperly adjusted
- 3. Vacuum leak
- 4. Incorrect vacuum advance hose connection
- 5. Faulty EGR valve operation
- 6. Faulty PCV valve operation
- 7. Incorrect choke operation (coil settings)
- 8. Improper choke pull off diaphragm operation
- 9. Improper vacuum hose connection
- 10. Low carburetor float level
- 11. Restricted, kinked fuel lines
- 12. Restricted fuel filter
- 13. Distributor cap cracked, arcing
- 14. Loose, corroded, or broken ignition wires
- 15. Damaged idle mixture adjusting screw
- 16. Distributor shaft worn
- 17. Faulty idle solenoid operation
- 18. Restricted carburetor jets or air bleeds
- 19. Restricted air, breather filters
- 20. Incorrect spark plug gap

ENGINE KNOCKS, PINGING

- 1. Timing improperly adjusted
- 2. Incorrect vacuum hose connections
- 3. Distributor malfunctions
- 4. Carburetor jets to lean, restricted
- 5. Low carburetor float level
- 6. Poor quality fuel
- 7. Faulty EGR valve operation
- 8. Faulty feedback system operation

ENGINE KNOCKS, PINGING (Cont.)

- 9. PCV system malfunction
- 10. Loose fan belts
- 11. Faulty vacuum delay valve (switch)

DIESELING, ENGINE RUN ON

- 1. Faulty idle solenoid operation
- 2. Carburetor linkage binding
- 3. Incorrect idle speed and idle mixture adjustment
- 4. Timing improperly adjusted

HESITATION, POOR ACCELERATION, FLAT SPOT

- 1. Vacuum leaks
- 2. Improper vacuum hose connections
- 3. Timing improperly adjusted
- 4. Low carburetor float level
- 5. Loose, corroded or broken ignition wires
- 6. Low ignition coil output
- 7. Fouled or damages spark plugs
- 8. Incorrect accelerator pump operation
- 9. Incorrect fuel pump pressure (1.5 3.5)
- 10. Restricted or kinked fuel lines
- 11. Restricted fuel filter
- 12. Carburetor power enrichment system malfunction

POOR LOW SPEED OPERATION

- 1. Indirect idle speed and idle mixture adjustment
- 2. Dirty air filter
- 3. Timing improperly adjusted
- 4. Loose, corroded, or broken ignition wires
- 5. Distributor cap cracked or arcing
- 6. Restricted idle jets or air bleeds
- 7. Incorrect carburetor float level

POOR HIGH SPEED OPERATION

- 1. Incorrect vacuum advance hose connection
- 2. Incorrect distributor centrifugal advance
- 3. Incorrect spark plug gap
- 4. Incorrect carburetor main jets, air correctors
- 5. Incorrect vacuum hose connections
- 6. Dirty air, or breather filters
- 7. Incorrect fuel pump pressure (1.5 3.5)
- 8. Worn distributor shaft
- 9. Incorrect carburetor float valve
- 10. Incorrect carburetor float level
- 11. Restricted or kinked fuel lines
- 12. Restricted fuel filter